Single microphone speech separation by diffusion-based HMM estimation
نویسندگان
چکیده
We present a novel non-iterative and rigorously motivated approach for estimating hidden Markov models (HMMs) and factorial hidden Markov models (FHMMs) of high-dimensional signals. Our approach utilizes the asymptotic properties of a spectral, graph-based approach for dimensionality reduction and manifold learning, namely the diffusion framework. We exemplify our approach by applying it to the problem of single microphone speech separation, where the log-spectra of two unmixed speakers are modeled as HMMs, while their mixture is modeled as an FHMM. We derive two diffusion-based FHMM estimation schemes. One of which is experimentally shown to provide separation results that compare with contemporary speech separation approaches based on HMM. The second scheme allows a reduced computational burden.
منابع مشابه
Single-Channel Sound Source Localization Based on Discrimination of Acoustic Transfer Functions
Many systems using microphone arrays have been tried in order to localize sound sources. Conventional techniques, such as MUSIC, CSP, and so on (e.g., (Johnson & Dudgeon, 1996; Omologo & Svaizer, 1996; Asano et al., 2000; Denda et al., 2006)), use simultaneous phase information from microphone arrays to estimate the direction of the arriving signal. There have also been studies on binaural sour...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملThe Listening Machine: 1st Annual Report
In this first year of the project, our work was focused on the problem of identifying and separating specific sound sources in mixtures. The core of our approach is to use prior knowledge about the sounds in the world, encapsulated in some kind of model, to provide the constraints needed to solve the blind separation problem which is otherwise ill-posed. We have looked at using this approach in...
متن کاملMicrophone-array speech recognition via incremental map training
For a hidden Markov model (HMM) based speech recognition system it is desirable to combine enhancement of the acoustical signal and statistical representation of model parameters , ensuring both a high quality speech signal and an appropriately trained HMM. In this paper the incre-mental variant of maximum a posteriori (MAP) estimation is used to adjust the parameters of a talker-independent HM...
متن کاملHMM-separation-based speech recognition for a distant moving speaker
This paper presents a hands-free speech recognition method based on HMM composition and separation for speech contaminated not only by additive noise but also by an acoustic transfer function. The method realizes an improved user interface such that a user is not encumbered by microphone equipment in noisy and reverberant environments. The use of HMM composition has already been proposed for co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Audio, Speech and Music Processing
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016