Single microphone speech separation by diffusion-based HMM estimation

نویسندگان

  • Yochay R. Yeminy
  • Yosi Keller
  • Sharon Gannot
چکیده

We present a novel non-iterative and rigorously motivated approach for estimating hidden Markov models (HMMs) and factorial hidden Markov models (FHMMs) of high-dimensional signals. Our approach utilizes the asymptotic properties of a spectral, graph-based approach for dimensionality reduction and manifold learning, namely the diffusion framework. We exemplify our approach by applying it to the problem of single microphone speech separation, where the log-spectra of two unmixed speakers are modeled as HMMs, while their mixture is modeled as an FHMM. We derive two diffusion-based FHMM estimation schemes. One of which is experimentally shown to provide separation results that compare with contemporary speech separation approaches based on HMM. The second scheme allows a reduced computational burden.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Channel Sound Source Localization Based on Discrimination of Acoustic Transfer Functions

Many systems using microphone arrays have been tried in order to localize sound sources. Conventional techniques, such as MUSIC, CSP, and so on (e.g., (Johnson & Dudgeon, 1996; Omologo & Svaizer, 1996; Asano et al., 2000; Denda et al., 2006)), use simultaneous phase information from microphone arrays to estimate the direction of the arriving signal. There have also been studies on binaural sour...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

The Listening Machine: 1st Annual Report

In this first year of the project, our work was focused on the problem of identifying and separating specific sound sources in mixtures. The core of our approach is to use prior knowledge about the sounds in the world, encapsulated in some kind of model, to provide the constraints needed to solve the blind separation problem which is otherwise ill-posed. We have looked at using this approach in...

متن کامل

Microphone-array speech recognition via incremental map training

For a hidden Markov model (HMM) based speech recognition system it is desirable to combine enhancement of the acoustical signal and statistical representation of model parameters , ensuring both a high quality speech signal and an appropriately trained HMM. In this paper the incre-mental variant of maximum a posteriori (MAP) estimation is used to adjust the parameters of a talker-independent HM...

متن کامل

HMM-separation-based speech recognition for a distant moving speaker

This paper presents a hands-free speech recognition method based on HMM composition and separation for speech contaminated not only by additive noise but also by an acoustic transfer function. The method realizes an improved user interface such that a user is not encumbered by microphone equipment in noisy and reverberant environments. The use of HMM composition has already been proposed for co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Audio, Speech and Music Processing

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016